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Abstract. The hierarchy of integrable nonlinear equations associated with the quadratic bundle is consid-
ered. The expressions for the solution of linearization of these equations and their conservation law in the
terms of solutions of corresponding Lax pairs are found. It is shown for the first member of the hierarchy
that the conservation law is connected with the solution of linearized equation due to the Noether’s the-
orem. The local hierarchy and three nonlocal ones of the infinitesimal symmetries and conservation laws
explicitly expressed through the variables of the nonlinear equations are derived.

PACS. 02.30.Jr Partial differential equations – 05.45.Yv Solitons

1 Introduction

One of the most effective tools of studying the nonlinear
phenomena is the inverse scattering transformation (IST)
method [1,2]. This method reduces the solution of the
Cauchy initial value problem of nonlinear partial differ-
ential equations (PDE’s), which admit a representation
as the compatibility condition of the overdetermined lin-
ear system (Lax pair), to solving linear singular integral
equations. It is especially significant that many of PDE’s
playing the important role in different branches of physics
can be investigated in the IST frameworks. For example,
the derivative nonlinear Schrödinger equation (DNLSE)
that was originally deduced for the Alfvén waves of fi-
nite amplitude [3,4] and the equations of massive Thirring
model (MTM) [5] belong to the class of the PDE’s inte-
grable with the help of IST method for the quadratic bun-
dle [6–8]. It was also revealed that DNLSE describes the
behavior of drifting filamentations in nonlinear electro-
static waves of magnetized plasmas [9], light pulses in the
optical fibers [10–12], magnetic holes of space plasmas [13]
and large-amplitude magnetohydrodynamics waves [14].
The MTM equations were recently shown to appear in the
coherent optics and nonlinear acoustics [15] as a limiting
case of the system of long/short-wave coupling (see [16]
and references therein).

The integrable nonlinear PDE’s are well known to pos-
sess the infinite hierarchies of infinitesimal symmetries and
conservation laws. An existence of them was proposed as
the integrability test to characterize the equations solvable
by IST (see, e.g., [17,18]). There are different methods
of obtaining the infinitesimal symmetries and conserva-
tion laws, which originate from the study of KdV equa-
tion [19]. Given a set of the scattering data (namely, the
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time-invariant part of them), one finds the infinite hierar-
chies of conserved densities [1,2,6,20–22]. The Bäcklund
transformation (BT) of integrable equation was used to
generate the hierarchy of conservation laws in [23,24]. The
approach that exploits the Noether’s theorem was applied
for the derivation of conservation laws of sine–Gordon and
KdV equations [25,26]. To produce the corresponding hi-
erarchy of infinitesimal symmetries, the implicit expres-
sions for the solutions of linearized equations, which are
obtained by means of infinitesimal BT, were expanded in
the power series on the parameter of this BT. The in-
finitesimal version of the dressing method was suggested
in [27] to construct the infinitesimal symmetries of inte-
grable PDE’s. Similar expressions for the perturbations of
some nonlinear PDE’s and their Lax pairs were presented
in [28]. The geometrical approaches that utilize the pro-
jective transformations or treat the soliton equations as
descriptions of pseudospherical surfaces were developed
for nonlinear PDE’s associated with matrix Lax pairs of
second order in [29,30] (see also [31,32]) and [33], respec-
tively. The hierarchies of local and nonlocal conservation
laws of DNLSE were found by using these methods [30,34].
Generalization of these methods on matrix-valued PDE’s
was suggested in [35]. The theory associated with recur-
sion operators for nonlinear equations in two spatial and
one temporal dimensions was developed in [36–38], and,
as an application of it, infinitely many symmetries and
constants of motion of the Kadomtsev–Petviashvili (KP)
and the Davey–Stewartson equations were obtained. The
method based on the theory of τ -functions was applied to
scalar and two-component KP hierarchies in [39].

Although the methods mentioned above appeal to
underlying Lax pair to produce the hierarchies of in-
finitesimal symmetries and conservation laws, they do not
entirely cover the class of PDE’s representable as the
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compatibility condition. This concerns especially the cases
of reductions of nonlinear PDE’s [21] and their integrable
deformations (see, e.g., [15,40,41]), which are most inter-
esting from physical point of view. The knowledge of the
infinitesimal symmetries and conservation densities of the
hierarchy allows one to make sure that the PDE given
belongs to it. The approach applicable to all integrable
nonlinear equations can be based, for instance, on explicit
expressions for the solution of linearized equation and the
conservation law in the terms of the solutions of corre-
sponding Lax pairs. In the present report, we construct
the infinite hierarchies of local and nonlocal infinitesimal
symmetries and conservation laws for the DNLSE hierar-
chy using such approach.

The paper is organized as follows. The nonlinear equa-
tions of the DNLSE hierarchy and their Lax pairs are pre-
sented in Section 2 The formulas of expansions in series on
the spectral parameter powers of solutions of the Lax pairs
are also given there. The solution of linearization of the
nonlinear PDE’s, which is expressed in the terms of solu-
tions of corresponding Lax pairs, is obtained in Section 3
by means of infinitesimal version of the binary Darboux
transformation (DT) [42]. This technique has been applied
to the DNLSE [43–45] and for obtaining the infinitesimal
symmetries of the nonlinear PDE’s [46–48]. To generate
the hierarchies of local and nonlocal infinitesimal sym-
metries expressed explicitly through the variables of the
nonlinear equations, the expansions in series of solutions
of the Lax pairs or the recursion operator can be used. In
Section 4 the conservation law for the DNLSE hierarchy
is derived. Substitution of the expansion in series of the
Lax pairs solutions into this formula yields the hierarchies
of local and nonlocal conservation laws. The connection
due to the Noether’s theorem of infinitesimal symmetries
and conservation laws we found is shown in this section
for the DNLSE case.

2 The DNLSE hierarchy

Let us consider (direct) Lax pair

ψx = U(λ)ψ, (1)

ψt = V (λ)ψ, (2)

where ψ = ψ(x, t, λ) = (ψ1, ψ2)T is the vector-column
solution; λ is complex parameter referred to as the spec-
tral parameter in the IST theory; U(λ) = U(x, t, λ) and
V (λ) = V (x, t, λ) are 2 × 2 matrix coefficients. The com-
patibility condition of the overdetermined system (1,2) is

U(λ)t − V (λ)x + [U(λ) , V (λ) ] = 0. (3)

We suppose in what follows that

U(λ) = λ2U (2) + λU (1) (4)

(i.e., Eq. (1) is the quadratic bundle) and

U (2) =
(−i 0

0 i

)
, U (1) =

(
0 q
r 0

)
. (5)

If V (λ) is chosen in the form

V (λ) =
2m∑
j=1

λjV (j), (6)

then equation (3) gives us the following expressions for
the matrix coefficients of V (λ):

V (2m−2j) = v(2m−2j)

(
1 0
0 −1

)
,

V (2m−2j−1) =

(
0 v

(2m−2j−1)
12

v
(2m−2j−1)
21 0

)
, (7)

(j = 0, ...,m− 1), where

v(2m−2j) = ∂−1
x (qv(2m−2j−1)

21 − rv
(2m−2j−1)
12 ) , (8)

(
v
(2m−2j−1)
12

v
(2m−2j−1)
21

)
= R̂j+1

(
0

0

)
, (9)

R̂ =
1
2

(
i∂x + q∂−1

x r∂x q∂−1
x q∂x

r∂−1
x r∂x −i∂x + r∂−1

x q∂x

)
, (10)

and system of nonlinear equations
(
qt
rt

)
= ∂xR̂

m

(
0
0

)
. (11)

(Note that operators ∂−1
x in Eqs. (8, 9) for equal j’s add

the same time-dependent functions as the constants of in-
tegration.) To obtain these formulas we make use the iden-
tities

R∂x = ∂xR̂,

R−1 = 2
(−i+ q∂−1

x r −q∂−1
x q

−r∂−1
x r i+ r∂−1

x q

)(
∂−1

x 0
0 ∂−1

x

)
(12)

with operator R being defined as given

R =
1
2

(
i∂x + ∂xq∂

−1
x r ∂xq∂

−1
x q

∂xr∂
−1
x r −i∂x + ∂xr∂

−1
x q

)
. (13)

As it will be seen in the next section, R̂ and its adjoint R
are the squared eigenfunction operator and the recursion
one [17] of the hierarchy considered.

The hierarchy of nonlinear equations (11) was found
in [22]. It admits under appropriate choice of the constants
of integration the following reduction

r = ±q∗. (14)

In this case, the first nontrivial equation of the hierarchy
is reduced after rescaling to DNLSE

iqt + qxx ∓ i(|q|2q)x = 0. (15)

Let us consider the expansions of solutions of equa-
tions (1, 2) in the series on the spectral parameter powers.
In the neighborhood of point λ = ∞, vector solutions of



N.V. Ustinov et al.: Infinitesimal symmetries and conservation laws of the DNLSE hierarchy... 313

the Lax pairs of nonlinear equations (11) are represented
as

ψ =
∞∑

k=0

A(k)

λk
M |a〉. (16)

Here |a〉 is a constant vector-column,

M =

(
e−iλ2x+ λ2mv(2m)t 0

0 eiλ
2x− λ2mv(2m)t

)

and coefficients A(k) solve system of equations
⎧⎪⎨
⎪⎩

[A(k), U (2)] +A
(k−2)
x = U (1)A(k−1)

[A(k), V (2m)] +A
(k−2m)
t =

2m−1∑
j=1

V (2m−j)A(k−j) .

An expansion in series of the solutions of Lax pairs con-
sidered in the neighborhood of point λ = 0 has form

ψ =
∞∑

k=0

λkB(k) |a〉, (17)

where B(0) = E and coefficients B(k) (k ≥ 1) are deter-
mined from equations

⎧⎪⎨
⎪⎩
B

(k)
x = U (2)B(k−2) + U (1)B(k−1)

B
(k)
t =

2m∑
j=1

V (j)B(k−j) .

It is seen that the first coefficients of the expansions are

A(0) =
(
w 0
0 w−1

)
, A(1) =

i

2

(
0 −qw−1

rw 0

)
,

A(2) =
1
8

⎛
⎜⎜⎜⎝
w

x∫
(2qrx + iq2r2) dx 0

0 w−1

x∫
(2qxr − iq2r2) dx

⎞
⎟⎟⎟⎠ ,

B(1) =
(

0 u
v 0

)
, B(2) =

⎛
⎜⎜⎜⎝

−ix+

x∫
qv dx 0

0 ix+

x∫
ru dx

⎞
⎟⎟⎟⎠ ,

where

u =

x∫
q dx, v =

x∫
r dx, w = exp

(
i

x∫
qr/2 dx

)
.

3 Darboux transformation and infinitesimal
symmetries

The hierarchy of nonlinear equations (11) follows also from
the compatibility condition of dual Lax pair

ξx = −ξ U(æ), (18)

ξt = −ξ V (æ), (19)

where ξ = ξ(x, t,æ) = (ξ1, ξ2) is a vector-row solution, æ
is the spectral parameter of the dual pair. Since matrix co-
efficients U(λ) and V (λ) defined by equations (4–7) satisfy
conditions

σ1U(−λ)+U(λ)T σ1 = 0, σ1V (−λ)+V (λ)T σ1 = 0, (20)

where σ1 is the Pauli matrix

σ1 =
(

0 1
1 0

)
,

the connection between the solutions of systems (1, 2) and
(18, 19) exists:

ξ = ψTσ1, æ = −λ. (21)

In the case of reduction (14) the solutions with complex
conjugate spectral parameters are also connected. For in-
stance, (ψ∗

2 ,±ψ∗
1)

T is a solution of direct Lax pair (1, 2)
with spectral parameter λ∗.

Let vector-column ϕ = (ϕ1, ϕ2)T and vector-row χ =
(χ1, χ2) be the solutions of Lax pairs (1, 2) and (18, 19)
with spectral parameters µ and ν, respectively. The
Lax pairs are covariant with respect to “turned” binary
Darboux transformation (BDT) {ψ, ξ, U(λ), V (λ)} →
{ψ[1], ξ[1], U(λ)[1], V (λ)[1]} of the form

ψ[1] = gT (λ)ψ, ξ[1] = ξT (æ)−1g−1, (22)

U(λ)[1] = λ2U (2)[1] + λU (1)[1], V (λ)[1] =
2m∑
j=1

λjV (j)[1],

(23)
where

T (λ) = E − µ− ν

λ− ν
P =

(
1 − ν − µ

λ− µ
P
)−1

,

P =
ϕχ

χϕ
, g = σ1T (0)−1

and

U (2)[1] = gU (2)g−1, V (2m)[1] = gV (2m)g−1, (24)

U (1)[1] = g
(
U (1) + (µ− ν)[U (2), P ]

)
g−1, (25)

V (j)[1] = gV (j)g−1 + (µ− ν)

×
2m∑

k=j+1

νk−j−1
(
V (k)[1]gP − gP V (k)

)
g−1 (26)

(j = 1, ..., 2m − 1). We call this transformation as
“turned” because formulas (22–26) is a product of usual
BDT [46,47] and additional gauge transformation carried
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out with the help of matrix g. This additional transforma-
tion allows us to avoid an appearance of the terms at the
zero power of λ in the expressions for U(λ)[1] and V (λ)[1]
(compare (23) with (4) and (6)).

Conditions (20, 21) are fulfilled for transformed matrix
coefficients U(λ)[1], V (λ)[1] and solutions ψ[1], ξ[1] of the
transformed Lax pairs if we impose restriction

χ = ϕTσ1, ν = −µ.
In this case, we have

U (2)[1] = U (2),

V (2m)[1] = V (2m).

Then, equation (25) gives us expressions for new (trans-
formed) solutions of hierarchy of nonlinear equations (11):

q[1] = r − 1
µ

(
ϕ2

ϕ1

)
x

,

r[1] = q − 1
µ

(
ϕ1

ϕ2

)
x

.

The second iteration of the BDT (22–26) keeping condi-
tions (20, 21) yields the following formulas

q[2] = q − µ2
1 − µ2

2

µ1µ2

(
ϕ

(1)
1 ϕ

(2)
1

µ1ϕ
(1)
1 ϕ

(2)
2 − µ2ϕ

(1)
2 ϕ

(2)
1

)

x

, (27)

r[2] = r +
µ2

1 − µ2
2

µ1µ2

(
ϕ

(1)
2 ϕ

(2)
2

µ2ϕ
(1)
1 ϕ

(2)
2 − µ1ϕ

(1)
2 ϕ

(2)
1

)

x

, (28)

where ϕ(k)
1 and ϕ(k)

2 are the components of vector solution
ϕ(k) of the direct Lax pair with spectral parameters µk

(k = 1, 2). If we put here ϕ(2) = (ϕ(1)
2

∗
,±ϕ(1)

1

∗
)T and

µ2 = µ∗
1, then

r[2] = ±q[2]∗.

This way we come to DT for the DNLSE hierarchy. The
compact form of Nth iteration of this transformation is
presented in [45].

Considering limits µ1 → µ and µ2 → µ in equa-
tions (27, 28), one obtains the following expressions (up
to a multiplier) for solution of the linearization of system
(11):

δq =
(
ϕ

(1)
1 ϕ

(2)
1

)
x
, (29)

δr = −
(
ϕ

(1)
2 ϕ

(2)
2

)
x
. (30)

It is checked by straightforward calculation that

R

(
δq
δr

)
= µ2

(
δq
δr

)
. (31)

This identity allows us to define in a recurrent manner the
coefficients of expansions of the right–hand sides of equa-
tions (29, 30) in the power series on the spectral parameter

at a neighborhood of the points µ = ∞ and µ = 0. The
coefficients of these expansions

δq =
∞∑

k=0

δq(k)

µ2k
, δr =

∞∑
k=0

δr(k)

µ2k

and

δqj =
∞∑

k=0

µ2kδq
(k)
j , δrj =

∞∑
k=0

µ2kδr
(k)
j

form the infinite hierarchies of infinitesimal symmetries.
Operator R satisfying (31) is nothing but the recursion
operator of the hierarchy (11). In the case of point µ = 0,
there exist three hierarchies of nonlocal infinitesimal sym-
metries δq(k)

j , δr(k)
j (j = 1, 2, 3, k = 0, 1, ...) that corre-

spond to different choices of the constants of integration
in operator R−1 (see Eq. (12)). The first nontrivial mem-
bers of the hierarchies for the points µ = ∞ and µ = 0,
respectively, are{

δq(1) = qx

δr(1) = rx
,

{
δq(2) = qt/2

δr(2) = rt/2
,

{
δq(3) = (−qxx + 3iqxqr + 3q3r2/2)x/4

δr(3) = (−rxx − 3irxqr + 3q2r3/2)x/4

and {
δq

(1)
1 = q

δr
(1)
1 = −r

,

{
δq

(1)
2 = 2(qv − i)

δr
(1)
2 = −2rv

,

{
δq

(1)
3 = 2qu

δr
(1)
3 = −2(ru+ i)

.

It is seen from these formulas that δq(k) ∼ v
(2m−2k+1)
12,x ,

δr(k) ∼ v
(2m−2k+1)
21,x and the infinite hierarchy correspond-

ing to the point µ = ∞ is local. Another way of producing
the hierarchies of infinitesimal symmetries is to substitute
expansions (16) and (17) into equations (29, 30).

4 Conservation laws and Noether’s theorem

Let us consider identity

(ξψ)xt = (ξψ)tx.

Excluding here the derivatives of ψ and ξ on x in the left-
hand side and the derivatives on t in the right-hand side
with the help of equations (1, 2) and (18, 19), respectively,
and dividing the relation obtained on λ − æ, we come to
the conservation law of the DNLSE hierarchy

Tt +Xx = 0,

where
T = ξ

(
(λ+ æ)U (2) + U (1)

)
ψ, (32)

X = −ξ
2m∑
k=1

k−1∑
j=0

λk−j−1æjV (k)ψ. (33)
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If we put λ = æ = µ, ψ = ϕ(1) and ξ = (ϕ(2)
2 ,−ϕ(2)

1 ),
where vectors ϕ(k) = (ϕ(k)

1 , ϕ
(k)
2 )T (k = 1, 2), as it was

supposed at the end of the previous section, are solutions
of Lax pair (1, 2) with spectral parameter µ, then expres-
sions (32, 33) are rewritten in the following manner

T = −2iµ(ϕ(1)
1 ϕ

(2)
2 + ϕ

(1)
2 ϕ

(2)
1 ) + qϕ

(1)
2 ϕ

(2)
2 − rϕ

(1)
1 ϕ

(2)
1 ,

(34)

X = −2
m∑

k=1

kµ2k−1v(2k)(ϕ(1)
1 ϕ

(2)
2 + ϕ

(1)
2 ϕ

(2)
1 )

+
m∑

k=1

(2k−1)µ2k−2
(
v
(2k−1)
21 ϕ

(1)
1 ϕ

(2)
1 −v(2k−1)

12 ϕ
(1)
2 ϕ

(2)
2

)
.

(35)

Substitution of expansions (16) and (17) of the Lax pair
solutions at the neighborhood of points µ = ∞ and µ = 0
into these formulas leads to the hierarchies of the conser-
vation laws expressed explicitly through the solutions of
nonlinear equations (11). For example, in the case of point
µ = 0 we have three infinite hierarchies T (k)

j,t + X
(k)
j,x = 0

(j = 1, 2, 3, k = 0, 1, ...), whose first conserved densities
and currents are

T
(0)
1 = q, X

(0)
1 = −v(1)

12 , T
(0)
2 = r, X

(0)
2 = −v(1)

21 , (36)

T
(1)
3 = qv − ur, X

(1)
3 = uv

(1)
21 − vv

(1)
12 − 2v(2). (37)

The first two conservation laws are obvious consequence
of the divergent form of equations (11).

Let us discuss in the case of system of nonlinear equa-
tions

iqt + qxx − i(q2r)x = 0, (38)

irt − rxx − i(qr2)x = 0, (39)

the connection between solutions (29) and (30) of lin-
earized equations and the conservation laws found. Note
that DNLSE (15) follows this system by imposing the con-
dition r = ±q∗. The coefficients of the second equation of
Lax pair (1, 2) of equations (38, 39) have the form

V (4) = 2U (2), V (3) = 2U (1), V (2) = qrU (2),

V (1) =
(

0 iqx + q2r
−irx + qr2 0

)
.

In the terms of potentials u and v the Lagrangian of sys-
tem (38, 39) reads as

L = i(uxvt + vxut) + uxxvx − vxxux − iu2
xv

2
x .

Using the designations for the Euler–Lagrange equations

Λ(u) ≡ −
(
∂L
∂ut

)
t

−
(
∂L
∂ux

)
x

+
(
∂L
∂uxx

)
xx

= −2(irt − rxx − i(qr2)x) = 0, Λ(v)

≡ −
(
∂L
∂vt

)
t

−
(
∂L
∂vx

)
x

+
(
∂L
∂vxx

)
xx

= −2(iqt + qxx − i(q2r)x) = 0,

the variation of the Lagrangian, which is caused by the
infinitesimal transformations of potentials u→ u+εδu and
v → v + εδv, is written in the form of Noether’s identity

δL = ε(At +Bx + Λ(u)δu+ Λ(v)δv). (40)

Here

A =
∂L
∂ut

δu+
∂L
∂vt

δv = i(q δv + r δu),

B =
(
∂L
∂ux

−
(
∂L
∂uxx

)
x

)
δu+

∂L
∂uxx

δux

+
(
∂L
∂vx

−
(
∂L
∂vxx

)
x

)
δv +

∂L
∂vxx

δvx

= qx δv − rx δu+ r δq − q δr − iqr2 δu− iq2r δv.

Given a symmetry of equations (38, 39), a conservation
law is derived from equation (40) due to the Noether’s
theorem. Few examples of the symmetries and associated
conservation densities and currents are listed below:

(1) δu = 1, δv = 0:
δL = 0,

T1 = ir, X1 = ivt − 2rx − 2iqr2. (41)

(2) δu = 0, δv = 1:
δL = 0,

T2 = iq, X2 = iut + 2qx − 2iq2r. (42)

(3) u→ ueiε, v → ve−iε, δu = iu, δv = −iv:
δL = 0,

T3 = qv − ur,

X3 = utv − uvt − 2i(qxv − qr + urx)−2(qv − ur)qr.
(43)

(4) x→ x+ ε, δu = q, δv = r:

δL = εLx,

T4 = 2iqr, X4 = 2(qxr − qrx) − 3iq2r2. (44)

(5) t→ t+ ε, δu = ut, δv = vt:

δL = εLt,

T5 = −qxr + qrx + iq2r2,

X5 = i(qxxr − 2qxrx + qrxx − 2q3r3) + 3(qxr − qrx)qr.
(45)

The conservation laws that arise in the first and second
cases are trivial. The symmetries of the potentials in the
third, fourth and fifth cases correspond, respectively, to
the infinitesimal symmetries δq(1)1 , δr(1)1 , δq(1), δr(1) and
δq(2), δr(2) presented at the end of previous section. Con-
served density T5 is proportional to the Hamiltonian den-
sity of DNLSE [22]. The Noether’s theorem was applied
in [49] to obtain T3 and X3, which are nothing but T (1)

3

and X
(1)
3 (37). Hence, δr(1)1 and δq(1) are connected by

the Noether’s theorem with T (1)
3 and X(1)

3 . We shall prove
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below that this is valid for all members of the hierarchies
of infinitesimal symmetries and conservation laws.

Formulas (29, 30) give us solutions of the linearized
equations on potentials

δu = ϕ
(1)
1 ϕ

(2)
1 , δv = −ϕ(1)

2 ϕ
(2)
2 .

It is remarkable that we are able to put the corresponding
variation of Lagrangian in divergent form:

δL =
(
iu δr + iv δq + 4µ(ϕ(1)

1 ϕ
(2)
2 + ϕ

(1)
2 ϕ

(2)
1 )
)

t

+
(
v δqx − u δrx + q δr − r δq − i(ur + 2qv)r δq

− i(qv + 2ur)q δr + 8iµ2(rδu + qδv)

− 16µ3(ϕ(1)
1 ϕ

(2)
2 + ϕ

(1)
2 ϕ

(2)
1 )
)

x
.

Combining this expression with equation (40), we come
after a cancellation of the terms with potentials u and v
to the conservation law, whose conserved density T̃ and
current X̃ are defined in the following manner

T̃ = 4µ(ϕ(1)
1 ϕ

(2)
2 + ϕ

(1)
2 ϕ

(2)
1 ) + 2i(qϕ(1)

2 ϕ
(2)
2 − rϕ

(1)
1 ϕ

(2)
1 ),

X̃ = −(16µ3 + 4µqr)(ϕ(1)
1 ϕ

(2)
2 + ϕ

(1)
2 ϕ

(2)
1 )

+ 12iµ2(rϕ(1)
1 ϕ

(2)
1 − qϕ

(1)
2 ϕ

(2)
2 )

+ 2(rx + iqr2)ϕ(1)
1 ϕ

(2)
1 + 2(qx − iq2r)ϕ(1)

2 ϕ
(2)
2 ).

These expressions are proportional to ones given by equa-
tions (34, 35). This way, we show that solutions (29, 30) of
linearized equations and conserved densities (34) and cur-
rents (35) are connected in the case of DNLSE in accor-
dance with the Noether’s theorem. This connection takes
also place between the infinite hierarchies of infinitesi-
mal symmetries δq(k), δr(k) and δq

(k)
j , δr(k)

j (j = 1, 2, 3,
k = 0, 1, ...) and the hierarchies of conservation laws ob-
tained by expansion in formulas (34, 35) of the Lax pair
solutions on the spectral parameter powers. First terms
of expansions (16) and (17) lead to the conservation laws
determined by formulas (44, 45) and (36, 37), respectively,
that coincide with ones presented in [22,29,34].

5 Conclusion

In the present report, we have found the expressions for
the solution of linearization of the DNLSE hierarchy equa-
tions and their conservation law in the terms of the so-
lutions of associated Lax pairs. The approach exploited
is based on the Darboux transformation technique. It is
shown in the DNLSE case that the conservation law is
connected with the solution of linearized equation accord-
ingly to the Noether’s theorem. The local hierarchy and
three nonlocal ones of the infinitesimal symmetries and
conservation laws that are explicitly expressed through
the variables of the nonlinear equations are produced us-
ing the recursion operator and expanding the Lax pair
solutions in the series on the spectral parameter powers.

The explicit form of infinitesimal symmetries and con-
servation laws of various hierarchies is useful to determine
an integrability of the nonlinear PDE’s given. This is es-
pecially important in the cases interesting from the phys-
ical point of view, such as the reductions of PDE’s and
their deformations. Recently, it was revealed that some
deformations of the well-known nonlinear integrable equa-
tions, which have the physical meaning, are also inte-
grable [15,41]. This opens the problems of a description of
classes of the deformations keeping the integrability and
an extension to them of the methods having been devel-
oped in the IST theory. The approach suggested here is
not specific for the hierarchy considered and can be ap-
plied to other integrable hierarchies and their integrable
deformations. An investigation of the hierarchy of the de-
formed nonlinear equations, which is associated with the
quadratic bundle and contains as a particular case the
following integrable deformation of the DNLSE

iqt + αq∗x + qxx ± i(|q|2q)x = 0,

where α is an arbitrary parameter, is a subject of the
future work.

It will be also interesting to extend this approach on
the multidimensional and nonlocal integrable equations.
An existence of the closed differential 1-forms defined on
the solutions of corresponding Lax pairs will play impor-
tant role in these cases. In particular, the DT technique
gives the expressions for the solutions of linearized equa-
tions, which contain these forms [46,48]. As in (1 + 1)-
dimensional case considered here, the solutions of the Lax
pairs can also be expanded in the series (at least, for some
classes of the initial value problems).

I am grateful Dr. Heinz Steudel for stimulating discussions and
hospitality. I thank Gottlieb Daimler- und Karl Benz-Stiftung
for financial support.
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